_
-
Ω
a
Ν
0
Q
2
Ξ
\supset
Q
₹
₹
≥
\sim
~
^
7
Ξ
_

STUDY MODULE DESCRIPTION FORM				
Name of the module/subject Photovoltaic systems	Co 10	de 10311461010326975		
Field of study	Profile of study (general academic, practical)	Year /Semester		
Power Engineering	(brak)	3/6		
Elective path/specialty	Subject offered in:	Course (compulsory, elective)		
Ecological Source of Electrical Energy Polish		obligatory		
Cycle of study:	Form of study (full-time,part-time)			
First-cycle studies full-time		e		
No. of hours		No. of credits		
Lecture: 15 Classes: - Laboratory: 15	Project/seminars: 15	3		
Status of the course in the study program (Basic, major, other) (university-wide, from another field)				
(brak)	ak)			
Education areas and fields of science and art		ECTS distribution (number and %)		
technical sciences		3 100%		
Technical sciences	3 100%			

Responsible for subject / lecturer:

Dr hab.inż. Grażyna Jastrzębska prof.nadzw. email: grazyna.jastrzebska@put.poznan.pl tel. 616652382 Elektryczny

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Basic knowledge of renewable energy sources und unconventional sources.
2	Skills	Ability of effective self-education in a field related to the chosen course of study .
3	Social competencies	Is aware of the need to broaden their competence, is ready to work in a team .

Assumptions and objectives of the course:

- 1. Broaden the knowledge concerning the construction, technology and possible of application of solar cells.
- 2. Presentation of technological issues and their possible applications and exploitation parameters of solar cells.
- 3. Acquisition of knowledge concerning the application of photovoltaic solutions.
- 4. Characteristic of photovoltaic (autonomous, cooperating with the network, hybrid) components.
- 5. Explanation of standardization issues, legal, economic issues and recycling.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Has a basic knowledge of solar cells (construction, technology and applications). Knows and understands the phenomena, processes and operation parameters of the devices converting solar energy into electricity [K_W09+++]
- 2. Versed in the current state of review energy development and prospective trends in Poland and around the world. [K_W20++]

Skills:

- 1. Can gain information from literature, databases and other sources, can integrate the information, interpret them, as well as conclude, develop and justify opinions. [K_U01++]
- 2. Is able to work alone and in a team. [K_U02++]
- 3. Can work individually and in team, can estimate the time needed for the requested task, can develop and implement a schedule of work to ensure deadlines. [K_U10++]

Social competencies:

Faculty of Electrical Engineering

- 1. Can use properly chosen methods and devices to perform the measurement of basic parameters characterizing components and systems. [K_K02 ++]
- 2. Is aware of responsibility for the own work and ready to comply with the principles of teamwork and accountability of collaborative tasks. [K_K04 ++]

Assessment methods of study outcomes

Lekture:

- Evaluate the listed knowledge and skills on the written exam.
- Continous evaluation (rewarding the activity and the quality perception during classes).

Lab. classes:

- Test and rewarding of the knowledge necessary to carry out the fundamental problems in the area of laboratory tasks.
- Continous evaluation (during each classe) rewarding the skills gained to use newly learned principles and methods.
- Evaluation of the knowledge and skills related to the laboratory task. Evaluation of the report of performed task.

Additional points for the activity, during classes, especially by:

- -promoting discussion on the additional aspects of the subject.
- effective use of the knowledge gained during solving the given task.
- willingness to work in a team to solve the lab tasks.
- comments/suggestions related to the improvement of the teaching materials.
- -esthetic accuracy of the reports and tasks-as a part of own study.

Course description

- 1. Sun Energy.
- 2. Photovoltaic conversion.
- 3. Solutions of materials construction, eksploatation of PV cells.
- 4. Selected material and operating parameters of photovoltaic cells.
- 5. Equivalent circuit Parameters and characteristics of PV cells .
- 6. Technology process.
- 7. PV installation.
- 8. Applications of PV cells.
- 9. Law, economic and social issues. Normalization. Recycling.
- 10. Photovoltaics in Poland.

Basic bibliography:

1. Jastrzębska G."Ogniwa słoneczne, budowa, technologia, zastosowanie", WKiŁ Warszawa 2013

Additional bibliography:

- 1. Drabczyk K., Panek P. "Silicon-based solar cells. Characteristics and production process", PAN Kraków 2012
- 2. Castaner L., Silvestre S. "Modelling photovoltaic systems", John Wiley and Sons, England 2002
- 3. Messenger R., Ventre J " Photovoltaic systems engineering ", CRC Press 2000
- 4. Lynn P.A. " Electricity from Sunlight ", John Wiley and Sons, England 2010
- 5. Czasopisma Fotowoltaika, Globenergia

Result of average student's workload

20

10. preparation of the project

http://www.put.poznan.pl/

1. participation in lectures 15 2. participation in laboratory classes 15 3. participation in project classes 15 4. participation in consulting (lectures) 5 5 5. participation in consulting (project) 4 6. participation in consulting (laboratory) 7. preparation to test/exam 15 8. test/exam 2 9. preparation for the classes and preparation of the report 6

Student's workload

Source of workload	hours	ECTS
Total workload	94	3
Contact hours	40	2
Practical activities	54	2